A Markov decision process-based policy characterization approach for a stochastic inventory control problem with unreliable sourcing

نویسندگان

  • S. Sebnem Ahiska
  • Samyuktha R. Appaji
  • Russell E. King
  • Donald P. Warsing
چکیده

We consider a single-product periodic-review inventory system for a retailer who has adopted a dual sourcing strategy to cope with potential supply process interruptions. Orders are placed to a perfectly reliable supplier and/or to a less reliable supplier that offers a better price. The success of an order placed to the unreliable supplier depends on his supply status that has a Markovian nature. The inventory control problem for this unreliable supply chain is modeled as a discrete-time Markov decision process (MDP) in order to find the optimal ordering decisions. Through numerical experimentation, the structure of the optimal ordering policy under several cost scenarios and different supplier reliability levels is determined. Four basic policy structures are found and are referred as case 1: order only from the unreliable supplier; case 2: order simultaneously from both suppliers or only from the unreliable supplier depending on the inventory level; case 3: order from one or the other but not both suppliers simultaneously; and case 4: order only from the reliable supplier. For all cases, (s, S)-like policies characterize perfectly the optimal ordering decisions due to the existence of the fixed ordering cost. Further experimentation is done to study the effects of changes in several system parameters (cost parameters such as fixed ordering cost, unit purchasing cost, backorder cost as well as the supplier reliability level) on the ordering policy and cost of the system. & 2013 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Queuing Model for Stochastic Location‌-inventory Problem with Waiting Cost Considerations

This paper presents a three-level supply chain model which includes single supplier, several distribution centers and sets of retailers. For this purpose, by adopting the queuing approach, a mixed nonlinear integer programming model is formulated. The proposed model follows minimizing the total cost of the system by determining: 1) the number and location of distribution centers between candida...

متن کامل

Optimizing Red Blood Cells Consumption Using Markov Decision Process

In healthcare systems, one of the important actions is related to perishable products such as red blood cells (RBCs) units that its consumption management in different periods can contribute greatly to the optimality of the system. In this paper, main goal is to enhance the ability of medical community to organize the RBCs units’ consumption in way to deliver the unit order timely with a focus ...

متن کامل

Vacation model for Markov machine repair problem with two heterogeneous unreliable servers and threshold recovery

Markov model of multi-component machining system comprising two unreliable heterogeneous servers and mixed type of standby support has been studied. The repair job of broken down machines is done on the basis of bi-level threshold policy for the activation of the servers. The server returns back to render repair job when the pre-specified workload of failed machines is build up. The first (seco...

متن کامل

Determining Optimal Number of Suppliers in a Multiple Sourcing Model under Stochastic Lead Times

Employing more than one supplier and splitting orders between them is a strategy employed in supply chains to lessen the lead-time risk in unstable environments. In this paper we present a multiple-sourcing inventory system with stochastic lead-times and constant demand controlled by a continuous review, reorder point-order quantity inventory policy. We consider the situation in which the order...

متن کامل

Stochastic Dynamic Programming with Markov Chains for Optimal Sustainable Control of the Forest Sector with Continuous Cover Forestry

We present a stochastic dynamic programming approach with Markov chains for optimal control of the forest sector. The forest is managed via continuous cover forestry and the complete system is sustainable. Forest industry production, logistic solutions and harvest levels are optimized based on the sequentially revealed states of the markets. Adaptive full system optimization is necessary for co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015